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Abstract

The large-time decay of an homogeneous ¯uctuating scalar ®eld in uniformly sheared homogeneous turbulence is

examined following di�erent points of view which are discussed in turn.
Self-preservation analysis of the scalar spectrum equation predicts an exponential decrease of the scalar variance

and a constant scalar-to-velocity timescale ratio R. One-point approaches reveal the same qualitative behaviour and
the few available experimental data appear to agree with this picture. However, current one-point modelling leads to

an asymptotic value of R independently from initial conditions and shear whereas this universality is broken down
when allowing for residual vortex stretching in both the velocity and the scalar ®elds. Further insight into the
physics and quantitative evaluation of above concepts would require ad hoc measurements. # 1999 Elsevier Science

Ltd. All rights reserved.

1. Introduction

Mean shear, as already known, a�ects the turbulent

di�usion of scalars [1,2]. In addition, mean shear plays

on scalar ¯uctuations variance by causing transfer out

of large scales down to smaller ones. This is due to dis-

tortion by the mean ¯ow which, similarly, results in

transfer of velocity ¯uctuations energy [3,4]. In the

equation for the mean destruction rate of scalar ¯uctu-

ations (the so-called scalar dissipation), this mechanism

gives rise to a production term including explicitly

mean velocity gradients [5]. Whereas mean scalar

gradients sustain production of both scalar ¯uctuations

energy and scalar dissipation, mean shear exclusively

promotes this latter. Thus, in case of vanishing scalar

gradients, the ¯uctuating scalar ®eld nevertheless inter-

acts with the mean ¯ow via mean shear.

Modelling and theoretical works [6±8] as well as ex-

perimental investigations on laboratory ¯ows [9] and

on dispersion in the atmospheric surface layer [10]

have established the shear-induced enhancement of the

destruction rate of scalar ¯uctuations. In particular, it

has been shown that mean shear can act signi®cantly

on concentration ¯uctuations decay in the far ®eld of

sources [6,7]. Still, thorough investigations on the sole

in¯uence of shear are somewhat lacking for existing

studies often gather the respective contributions of

scalar and velocity mean gradients together [2,11±13].

In the present work, the decay of a zero-mean-gradi-

ent ¯uctuating passive scalar ®eld in a shear ¯ow is

analyzed with intent to bring out the e�ect of shear.

This situation may be related, for instance, to the far

®eld of a concentrated source of contaminant in which

the concentration gradients vanish while the e�ect of

shear increases as the lengthscales of the concentration

®eld grow. Furthermore, an uniform passive scalar

®eld (say, temperature) submitted to a controlled mean

shear can be available in the laboratory by combining

a slightly heated grid with a shear generator [14].

It will be assumed that the ¯ow is represented by

homogeneous sheared turbulence which retains most

features of inhomogeneous turbulence while relieving
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the treatment of complications such as wall boundaries

and turbulent transport. Although inconsistencies in-
herent in this concept have early been pointed out,
[4,15±17] experimental studies on nearly homogeneous

shear ¯ows have been reported by Rose [18],
Champagne et al. [15], Mulhearn and Luxton [19],
Harris et al. [16], Tavoularis and Corrsin [11,12] and

Tavoularis and Karnik [20], among others. Theoretical
analysis [17] suggests that an homogeneous shear ¯ow
may reach a self-similar regime in which the turbulent
kinetic energy K and its dissipation rate E grow expo-

nentially at the same rate while the anisotropy tensor
as well as the dimensionless timescale SK/E (where S is
the uniform mean shear) become constant indepen-

dently from initial conditions. This picture is con®rmed
by available experimental data [20,21] and is in agree-
ment with current modelling of turbulence [22].

Recently, George and Gibson [23] have examined
self-similar solutions of the energy spectrum equation

in homogeneous sheared turbulence. Their analysis

shows the existence of a self-similarity regime in which
both the Taylor microscale and the integral lengthscale
are constant. They also ®nd K and E to increase expo-

nentially and SK/E and the anisotropy tensor to be
constant. George and Gibson [23] stress, in addition,
that although the energy spectrum reaches a self-simi-

larity regime, its shape is determined by initial con-
ditions. In the ®eld of one-point modelling, the model
proposed by Bernard and Speziale [24] departs from
the current KÿE concept in that it accounts for residual

vortex stretching. According to this approach, the
dynamic ®eld asymptotically tends to a production-
equals-dissipation regime in which K and E attain con-

stant values determined by initial conditions. The
dimensionless timescale SK/E and the anisotropy tensor
reach an universal equilibrium while the turbulence

Reynolds number assumes a constant value depending
on the residual vortex stretching. The authors show

Nomenclature

bij anisotropy tensor components, �u 0i u 0j ÿ
1
3q

2dij �=q2
CD, CS constants of modelled dissipation and

stretching terms of scalar variance dis-
sipation

Csy constant of the low-wavenumber

power-law of the scalar spectrum
Cm, CE1, CE2 constants of the standard kÿE model
CHu constant of modelled shear-production

term of scalar variance dissipation
Dy molecular di�usivity of scalar y
Ey scalar spectrum
k wavenumber modulus

K turbulent kinetic energy
Ly similarity lengthscale of the scalar

®eld

P production of turbulent kinetic energy
PHu production of scalar variance dissipa-

tion by mean shear

Pel PeÂ clet number, qly/Dy

q 2 trace of Reynolds stress tensor,
q 2=2 K

R scalar-to-velocity timescale ratio, y 0 2E/
q2Ey

Ret turbulence Reynolds number, K 2/nE
sy exponent of low-wavenumber law of

the scalar spectrum
S mean shear
SEy spectral transfer due to mean shear

Sc Schmidt number, n/Dy

Ty spectral transfer by nonlinear inter-
actions

t time
ui velocity components
xi space coordinates

Greek symbols
b growth rate of turbulent kinetic

energy
by decay rate of scalar variance
dij Kronecker's tensor

E dissipation of turbulent kinetic energy
Ey scalar variance dissipation
ZC Corrsin's microscale, (D 3

y/E )
1/4

Z2, Z3 small parameters

ly scalar ®eld microscale
Ly scalar ®eld integral lengthscale
n kinematic viscosity

y passive scalar
tt turbulent kinetic energy dissipation

timescale, q 2/2E
ty scalar variance dissipation timescale,

y 0 2=2Ey
c_E dimensionless decay rate of turbulent

kinetic energy dissipation

ccyy dimensionless decay rate of scalar var-
iance dissipation

zz1, zz2, zz3 small parameters

Subscript
1 asymptotic value
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this regime to occur at rather large total strain that is,
St >30 which makes the experimental veri®cation of

their analysis di�cult at present.
The objective of the study is to draw the impli-

cations of di�erent concepts regarding the e�ect of

mean shear on scalar ¯uctuations. To this aim, three
approaches are successively analyzed and compared. In
Section 2, the asymptotic behaviour of the scalar ®eld

is derived from a self-similarity analysis of the scalar
variance spectrum equation. Section 3 is devoted to
one-point approaches. Firstly, the large-time decay of

scalar ¯uctuations in the presence of mean shear is
examined in the context of current modelling.
Afterwards, the alternative point of view of Bernard
and Speziale [24] which, up to the present, has not

been fully validated, is extended to the scalar dissi-
pation. A somewhat richer picture of the asymptotics
of the scalar ®eld arises from accounting for the e�ect

of residual vortex stretching. Qualitative comparisons
with some experimental data are discussed in section 4.

2. Spectral self-preservation analysis

Self-preserving solutions in the presence of shear can

be derived from the spectral equation as already done
for the velocity ®eld [23]. The equation for the three-
dimensional spectrum of scalar ¯uctuations is obtained

following standard techniques [4] that is, applying
Fourier transform to the two-point correlation
equation. Assuming zero mean scalar gradient, homo-
geneous turbulence and a mean velocity ®eld

ui=Sx2di1 with uniform and constant shear S, the
scalar spectral equation is ®nally written:

@Ey�k, t�
@ t

ÿ SEy�k, t� � Ty�k, t� ÿ 2Dyk
2Ey�k, t�: �1�

The wavenumber vector is denoted by ~k with j ~k j�
kiki (i= 1, 2, 3). All quantities of Eq. (1) represent
averages over spherical shells of radius k:

Ey�k, t� � 2pk2�Ey, y� ~k, t��av

Ty�k, t� � 2pk2�Ty, y� ~k, t��av

Ey�k, t� � 2pk2

"
k1
@Ey, y� ~k, t�

@k2

#
av

with:

�Ey, y� ~k, t��av �
1

4pk2

� �
k�j ~kj

Ey, y� ~k, t� dA�k�

�Ty, y� ~k, t��av �
1

4pk2

� �
k�j ~kj

Ty, y� ~k, t� dA�k�

"
k1
@Ey, y� ~k, t�

@k2

#
av

� 1

4pk2

� �
k�j ~kj

k1
@Ey, y� ~k, t�

@k2
dA�k�:

Ey, y� ~k, t ) is the Fourier transform of the two-point

scalar correlation and Ty, y� ~k, t ) is related to the
Fourier transforms of the two-point velocity-scalar
triple correlations.
Terms on the right-hand side of Eq. (1) are usual in

shear-free turbulence and represent, respectively, spec-
tral transfer by nonlinear interactions and molecular
dissipation; in the last term, Dy is the molecular dif-

fusivity of the scalar quantity y. The second term on
the left-hand side of the spectral equation arises from
the presence of mean shear and represents spectral

transfer due to distortion by the mean ¯ow. Mean
shear causes also transfer through the velocity ¯uctu-
ations spectrum. This was analyzed in detail by

Lumley [3] (see also Ref. [4]) who showed that this
mechanism is con®ned into the anisotropic low-wave-
number range, extracting energy from large scales and
feeding the smaller ones. It is to be reminded that for

both transfer terms of the spectral equation:�1
0

Ty�k, t� dk � 0 and

�1
0

SEy�k, t� dk � 0:

Mean shear thus does not a�ect the total variance
budget but hastens the decay via enhancement of spec-

tral transfer.
Now, looking for self-similar solutions of Eq. (1), let

us write:

Ey�k, t� � ~E y�t� fE� ~k �

Ty�k, t� � ~T y�t� fT� ~k �

SEy�k, t� � S ~E y�t� fE� ~k �

with ~k � kLy�t�. Reporting above expressions in Eq.
(1) and multiplying all terms by L2

y�t�=Dy ~E y�t� yields:

L2
y�t�

Dy ~E y�t�
d ~E y

dt
fE� ~k � � Ly�t�

Dy

dLy

dt
~k

dfE

d ~k

� L2
y�t�

Dy ~E y�t�
~T y�t� fT� ~k � � L2

y�t�
Dy ~E y�t�

S ~Ey�t� fE� ~k �

ÿ 2 ~k
2
fE� ~k �:

Existence of self-similar solutions requires:
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L2
y�t�

Dy ~E y�t�
d ~E y

dt
� constant �2�

Ly�t�
Dy

dLy

dt
� constant �3�

L2
y�t� ~T y�t�
Dy ~E y�t�

� constant �4�

L2
y�t�S ~Ey�t�
Dy ~E y�t�

� constant: �5�

Besides, de®nition of the total variance

y 02�t� � 2

�1
0

Ey�k, t� dk

yields ~E y�t�Ay 0 2�t�Ly�t� which, with Eqs. (4) and (5),
leads to:

~T y�t�AS ~E y�t�ADyy
02�t�=Ly�t�:

In addition, Eq. (3) gives: L2
y�t� � aDyt� b. In Eq. (5),

this expression implies S ~Ey�t�= ~E y�t�0tÿ1 (if a$0).

Since ~Ey and EÄy are both related to the spectrum Ey, y,
self-preservation requires ~Ey�t�A ~E y�t� and, hence,
S0 tÿ1. This solution arises also from the study of the

equation for the velocity ¯uctuations spectrum [23]. As
the analysis is restricted to constant shear, we necess-
arily have a = 0 and, therefore, Ly=constant. The
de®nition of the mean destruction rate of scalar ¯uctu-

ations

Ey�t� � 2Dy

�1
0

k2Ey�k, t� dk

gives, with the previous relations:

Ey�t�ADyy 02�t�=L2
y

which suggests LyA ly, since Ey�t� � 6CDyy
0 2�t�=l2y

with ly being the scalar microscale and C a constant
accounting for anisotropy. This latter result implies,
using Eq. (2):

~E y�t� � ~E y�0� exp�byDyt=l
2
y�

with by=constant. One can also write:

y 02�t� � y 02�0� exp�b 0ySt�

with b 0y�byDy=l
2
yS. As a consequence:

dy 02

dt
� Sb 0yy

02 � ÿ2Ey

and hence: b 0y � ÿ�Sty�ÿ1 where ty�y 0 2=2Ey, the scalar
timescale, is constant. It is also straightforward to

show that the scalar integral lengthscale:

Ly � p

y 02

�1
0

Ey�k, t�kÿ1 dk

is proportional to Ly and is thereby constant.

Finally, the above analysis suggests that during self-
similar decay of scalar ¯uctuations in homogeneous
sheared turbulence, both the variance y 0 2 and the

destruction rate Ey decrease exponentially, at the same
rate, keeping the timescale, the integral lengthscale and
the microscale constant. This, of course, sharply con-
trasts with self-preserving decay in homogeneous,

shearless turbulence during which y 0 2 and Ey follow
power laws and all scales grow with time [4].
Moreover, since in the case of homogeneous shear the

approach of George and Gibson [23] leads to exponen-
tial increase of both the energy of turbulence q 2/2 and
the dissipation rate E with tt � q2=2E remaining con-

stant, it can also be inferred that the Corrsin's micro-
scale ZC � �D3

y=E�1=4 decreases exponentially while the
PeÂ clet number Pel � qly=Dy increases and the scalar-

to-velocity timescale ratio R � ty=tt reaches a constant
value. It is also worth noticing that the lengthscale
de®ned as ly � qty increases exponentially.
Self-preservation has further consequences on the

shape of the spectrum. At low wavenumbers, assuming
a power law, the scalar variance spectrum can be writ-
ten, in the self-similar form:

Ey�k, t�
y 02ly

� Csy

y 02lsy�1y

�kly�sy for k40:

Since y 0 2 and ly are the similarity variables, the ratio
Csy=y

0 2lsy�1 is a constant if self-preservation is valid in
this spectral range. Then, the constancy of ly and the

exponential time evolution of y 0 2 imply that Csy
cannot

be constant but decreases in time as Csy0 exp�ÿb 0ySt�.
The inertial range, if any, is de®ned, in terms of self-

similarity variables, by:

Ey�k, t�
y 02ly

� Cy�Ey=y 02�Eÿ1=3l2=3y �kly�ÿ5=3:

As Ey=y
0 2 and ly are constant in the self-preserving

regime, we necessarily have Cy0 exp�bt=3� where b is
the growth rate of q 2 and E; this also means that
CyARe1=3t , Ret being the turbulence Reynolds number.

Note, ®nally, that a kÿ1 scaling of the scalar variance
spectrum in the form Ey�k, t� � C1EyTkÿ1, with T
being a constant timescale, implies:

Ey�k, t�
y 02ly

� 1

2
C1Ttÿ1y �kly�ÿ1
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in which, this time, C1 is a constant since in the self-
preserving regime ty is constant. In the special case

T=q 2/2E (which is constant during self-preservation),
we have:

Ey�k, t�
y 02ly

� C1R
ÿ1�kly�ÿ1:

3. One-point approaches

3.1. Current modelling of homogeneous shear turbulence

In an homogeneous turbulent shear ¯ow the mean
velocity of which is expressed as ui � Sx 2di1 where S is

the constant and uniform mean shear, the evolution of
q 2 is given by the exact equation:

dq2

dt
� ÿ2u 01u 02Sÿ 2E:

The most usual modelling of the E-equation is [24]:

dE
dt
� ÿcE

E2

q2

with cE � 2CE1u
0
1u
0
2S=E� 2CE2 , where CE1 and CE2 are

model constants. A KÿE type modelling of the
Reynolds stress tensor yields u 01u

0
2 � ÿCm�q4=4E�S, Cm

being a constant. In the framework of this classical

modelling, it is easy to prove that the turbulence time-
scale, the component b12 of the anisotropy tensor and
the production-to-dissipation ratio tend to asymptotic

values, respectively, (q 2/2E )1, (u '1u '2/q
2)1 and (ÿu '1u '2S/

E )1 which are independent from initial conditions. The
kinetic energy of turbulence and its mean dissipation
rate increase exponentially in time at the rate b �
2��E=P �1 ÿ 1��u 01u 02=q2�1S (P representing production)
and so does the turbulence Reynolds number.
In this type of ¯ow, ¯uctuations of an homogeneous

scalar ®eld decay according to:

dy 02

dt
� ÿ2Ey �6�

dEy
dt
� ÿcy

E2y
y 02
: �7�

Eq. (7) is nothing but a compact form of the Ey-
equation written by analogy with the above E-equation
using the dimensionless decay rate cy which is to be
modelled [32]. Terms requiring closure are vortex

stretching, molecular dissipation and mean shear. In
the exact equation for Ey, this latter is represented by
the term [5]: ÿ2Dy@y

0=@x a:@y
0=@xb:@ua=@xb which, in

the present case, is reduced to
ÿ2Dy@y

0=@x 1:@y
0=@x 2:S. Standard models [25±27] rep-

resent production of Ey by mean shear, PHu, as:

Pru � ÿ2Crub12SEy with Cru � constant:

Hence, cy can be written as:

cy � c�m�y � 4Crub12S�q2=2E�R

where R � y 0 2E=q2Ey is the scalar-to-velocity timescale
ratio.

Modelled equations for Ey di�er from each other
regarding the expression for c (m)

y that is, the modelling
of stretching and molecular dissipation. The antagon-

istic e�ects of these mechanisms in the budget of Ey,
the former acting as production and the latter as
destruction, have early been recognized [28±30].

Zeman and Lumley [31], however, modelled the sum
of these terms as a destruction mechanism. The model
of Newman et al. [32] is similar in this respect and is
written:

c�m�y � 2CSR� CD:

CS and CD are constants. This model was implemented

in a number of subsequent numerical studies [25±
27,33,34]. On the other hand, modelling stretching and
molecular dissipation as opposed mechanisms was pro-

posed by Lumley and Khajeh-Nouri [28]. Mantel and
Borghi [35] recently adopted the same view and, fur-
thermore, argued for the necessity to include the turbu-

lence Reynolds number in the modelling of c (m)
y in

order to agree with the order-of-magnitude analysis
[28,29,35,36]. Their model is expressed as:

c�m�y � ÿRe1=2t �2CSRÿ CD�:

Note that the same notations are used for the con-

stants although they may assume distinct values in
each model.
The asymptotic decay of scalar ¯uctuations given by

the above models is examined assuming that the

dynamic ®eld has reached equilibrium that is, the tur-
bulence timescale and b12 are constant and equal, re-
spectively, to:

�q2=2E�1 � ��CE2 ÿ 1�=Cm�CE1 ÿ 1��1=2Sÿ1

�b12�1 � ÿ
1

2
�Cm�CE2 ÿ 1�=�CE1 ÿ 1��1=2:

From Eqs. (6) and (7), the equation for R is easily de-
rived:

dR

dt
� 1

2
�cy ÿ 2�

�
2E
q2

�
1
:

An equilibrium state is reached when R equals R1 in
such a way that cy=2 which yields, with a Newman et
al. [32] type modelling of c (m)

y :
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R1 � 2ÿ CD

2�CS � 2Cru�b12�1S�q2=2E�1�
:

R1 is a positive non-zero value if CD > 2 and
CS=Cru <ÿ2�b12�1S�q2=2E�1 or CD < 2 and
CS=Cru > ÿ2�b12�1S�q2=2E�1. According to the above
equations for (b12)1 and (q 2/2E )1,

2Cru�b12�1S�q2=2E�1 � ÿCru�CE2 ÿ 1�=�CE1 ÿ 1�

and R1 is consequently independent from initial con-
ditions. With usual values of CE1 and CE2 (CE121.45,
CE221.9), the ratio (CE2ÿ1)/(CE1ÿ1) is close to 2.
The constraint CDr2 satis®es the requirement

imposed by Newman et al. [32] that, in homogeneous
decaying turbulence, R should reach its equilibrium
value monotonically. In some models [25,37] the value

CD=2 is chosen in order to ensure that, in freely
decaying turbulence, dR/dt= 0. However, in the pre-
sent case of zero mean scalar gradient with shear,

CD=2 would lead to R1=0. This value is not unphy-
sical but represents a limit in which the scalar variance
decays exponentially at an in®nite rate implying that

¯uctuations completely vanish. Models with CD > 2
and CS/CHu < 2 ensure that R1 is nonzero and posi-
tive. This is realized, for instance, by the models of
Yoshizawa [26] and Nagano and Kim [27] in which

(CD, CS, CHu)=(2.4, 0.52, 0.52) and (2.2, 0.8, 0.72)
yield R1=0.38 and R1=0.16, respectively. It is also
straightforward to show that, in both models, R1 is a

stable ®xed point.
In the framework of the model of Mantel and

Borghi [35], the equilibrium state is de®ned by:

R1 � ÿCDRe
1=2
t � 2

2�ÿCSRe
1=2
t � 2Cru�b12�1S�q2=2E�1�

:

As reported previously, KÿE type modelling of homo-
geneous turbulent shear ¯ows leads to unbounded

growth of the turbulence Reynolds number with time,
in agreement with the analysis of Tavoularis [17] and
the recent study of George and Gibson [23]. In the

model of Mantel and Borghi, the equilibrium for the
scalar ®eld is thereby reached asymptotically as Ret
tends to in®nity which imposes R tending to R1=CD/
2CS. This limit is free from shear-induced e�ect since

the CHu-term becomes vanishingly small in comparison
with the Re 1/2t -term. This models consequently ignores
the e�ect of mean gradients on Ey when applied to

large Reynolds number turbulent shear ¯ows [38].
Despite their basic di�erences, both Newman et al.
and Mantel and Borghi models, in the case under

study, yield an asymptotic regime in which cy=2 and
y 0 2 decays exponentially at a rate equal to tÿ1y1 ��R1�q2=2E�1�ÿ1.

3.2. Alternative modelling and extension to the scalar
®eld

Analyzing the self-preserving regime of velocity ¯uc-
tuations decay, Speziale and Bernard [39] have proved

that accounting for momentary unbalanced vortex
stretching provides a more complete understanding of
isotropic turbulence than current modelling does. This

approach has recently been extended to the case of a
scalar ®eld and validated by means of comparison with
experimental data on temperature ¯uctuations decay in

grid turbulence [40]. Bernard and Speziale [24] call
upon the same concept in their study of homogeneous
shear turbulence and, allowing for small departures
from equilibrium, derive a model which, at large times,

yields an asymptotic production-equals-dissipation
regime with bounded energy and dissipation.
Interestingly, this contrasts with the asymptotic trend

of standard models. It is also worth noticing that
Tavoularis and Karnik [20] showed that an asymptotic
regime with constant kinetic energy can be compatible

with their measurements in the case of low shear. The
experimental investigation of the large-time evolution
of homogeneous shear turbulence, however, is delicate

and the question of a possible bounded-energy state is
still an open question. Keeping this limitation in mind,
the approach of Bernard and Speziale [24] is analyzed
with regard to the e�ect of mean shear on the destruc-

tion rate of scalar ¯uctuations.
In the framework of this model, the nondimensional

rate of change of E is:

cE � 2CE1u
0
1u
0
2

S

E
ÿ 14

3
�����
15
p CE3

q2

2�nE�1=2 � 2CE2

with

CE2 � 2ÿ Z2 and CE3 �
3
�����
15
p

14
Z3:

Z2 and Z3 are small parameters accounting for depar-
ture from the regime in which there is no residual vor-

tex stretching. The second term on the right-hand side
corresponds to residual vortex stretching and the cur-
rent model for cE is retrieved with CE3=0. With KÿE
modelling of the Reynolds stress tensor, this approach
produces equilibrium states in which q 2 and E are con-
stant. The turbulence timescale, the b12 component of
the anisotropy tensor as well as the turbulence

Reynolds number tend to the following constant
values:

�q2=2E�1 � 1=S
����
C
p

m

�b12�1 � ÿ
����
C
p

m=2
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Ret1 �
135

49

�
CE2 ÿ CE1

CE3

�2
:

Note that (q 2/2E )1 and (b12)1 di�er from those

obtained in current models (Section 3.1). It is to be
noted, however, that the numerical results of Bernard
and Speziale agree with those from standard models
for elapsed time St < 30.

A model accounting for non-equilibrium due to in-
itial unbalanced vortex stretching has been proposed
for addressing the approach to self-preservation of an

homogeneous scalar ®eld [40]. From the exact Ey-
equation, c (m)

y has been written as follows:

c�m�y � ÿ
5
���
2
p

9
���
3
p SyPel � 10

9
Gy:

Sy is related to the mixed-derivative skewness coef-

®cient and Gy is the coe�cient of scalar enstrophy
destruction. Then, the expression characterizing com-
plete self-preserving decay has been derived to be, at
large Reynolds and PeÂ clet numbers:

10

9
Gy � 5

���
2
p

9
���
3
p SyPel � 2R� 2:

Now, similarly to the study of Bernard and Speziale
[24] for the velocity ®eld, small departures from the
above equilibrium regime are expressed as:

10

9
Gy �

 
5
���
2
p

9
���
3
p Sy ÿ z3

!
Pel � �2ÿ z1�R� �2ÿ z2�

where z1, z2 and z3 are small parameters.

Consequently, using Pe 2l=24ScRRet, c
(m)
y becomes:

c�m�y � CEy1
R� CEy2

ÿ 20

9
CEy3

Sc1=2Re1=2t R1=2

with

CEy1
� 2ÿ z1; CEy2

� 2ÿ z2; CEy3
� 9

���
3
p

5
���
2
p z3:

Sc is the Schmidt number, Sc=n/Dy. The above

c (m)
y corresponds to a generalized Newman et al. [32]

type model (section 3.1.) including a non-equilibrium
(RetR )1/2-term resulting from residual vortex stretch-
ing. Then, accounting for homogeneous shear, cy is

written as follows:

cy � 4Crub12S
q2

2E
� c�m�y

that is,

cy �
�
4Crub12S

q2

2E
� CEy1

�
R� CEy2

ÿ 20

9
CEy3

Sc1=2Re1=2t R1=2:

As previously, it is assumed that the scalar ®eld
evolves in a dynamic ®eld which has already reached
the asymptotic state and hence, in the framework of
the model of Bernard and Speziale, q 2/2E, b12 and Ret
are constant. Using their asymptotic expressions in cy

yields:

cy � �CEy1
ÿ 2Cru�R� CEy2

ÿ 20
���
5
p

7
���
3
p �CE2 ÿ CE1 �

�
 
CEy3

CE3

!
Sc1=2R1=2: �8�

The non-equilibrium term includes the e�ects of re-
sidual vortex stretching on both the dynamic and the

scalar ®elds through the ratio CEy3
=CE3 .

The ®xed-point equation for R, resulting from cy=2
(Section 3.1), is:

aR1 � bR1=2
1 � c � 0 �9�

with

a � CEy1
ÿ 2Cru; b � ÿ20

���
5
p

7
���
3
p Sc1=2�CE2 ÿ CE1 �

CEy3

CE3
;

c � CEy2
ÿ 2:

This is a second-order equation for R 1/2
1 . For the non-

equilibrium terms to e�ectively represent residual vor-
tex stretching in both E- and Ey-equations, CE3 and CEy3
must be positive which implies b < 0 since CE2 > CE1 .

In addition, for consistency with current modelling, it
is required that CEy2

> 2 i.e. c> 0 (z2 < 0). Coe�cient
a can be either positive or negative depending on the

values of CEy1
and CHu. Since CEy1

' 2, CHu < 1
[26,27], makes a positive whereas CHu > 1 (as in Ref.
[25]) implies that a is negative. As the interest of the

analysis lies in retaining the e�ects of residual vortex
stretching on both the velocity and the scalar ®elds,
the special cases in which one constant at least among
CE3 , CEy3

and c is zero are discarded directly.

If a> 0, the model does not yield a physical be-
haviour. As a matter of fact, with a > 0, Eq. (9) has
either no real solution or an unstable double positive

node, or two positive nodes one of which, the larger
one, is unstable. For initial values larger than this lat-
ter, R tends to in®nity. This result is unphysical since,

according to Eq. (8), cy2aR for R 41 which
implies that Ey tends to zero while y 0 2 tends to a non-
zero constant value.
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If a< 0, Eq. (9) has one physical stable solution:

R1 �
�
z3
Z3

�2

�G�CEy1
ÿ 2Cru��ÿ1

241ÿ  1� z2

�
Z3
z3

�2

G

!1=2
352 �10�

with

G � CEy1
ÿ 2Cru

24Sc�CE2 ÿ CE1 �2
:

In this case, the model produces a physical behaviour
whatever the initial value of R. In Eq. (10), the mol-
ecular Schmidt number, Sc, is a characteristic of the

¯uid and CE1 and CE2 are standard model constants.
CEy1

is close to 2. and CHu has to assume a value larger

than unity as, for instance, in Ref. [25]. The equation
thus comprises two undetermined parameters namely,
z2 and Z3/z3, representing the e�ect of residual vortex

stretching. Despite this arbitrariness, a quite interesting
feature is that, within this approach, R1 is shown to
depend on residual vortex stretching and is thereby not

universal which contrasts with the result derived from
standard modelling (section 3.1.).
Asymptotic forms of Eq. (10) can be obtained

depending on the order of magnitude of Z3/z3. From

Eq. (10), it is straightforward to show that:

R1 ' z2�CEy1
ÿ 2Cru�ÿ1 if Z3=z3 >> �z2G�ÿ1=2

and

Fig. 1. Decay of normalized centreline temperature variance in the experiment of Karnik and Tavoularis (Ref. [9]).
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R1 ' �96Sc�ÿ1
�
z2

Z3=z3
�CE2 ÿ CE1 �

�2
if

Z3=z3 << �z2G�ÿ1=2:

In the latter limit, the action exerted by mean shear on
the scalar ®eld (represented by the CHu-term of cy) is
absent. This e�ect is retained if Z3/z3 is of the same

order of magnitude as (z2G )ÿ1/2 or larger that is, since
z2 is a small parameter, if Z3 > z3. This result was ex-
pectable from Eq. (8) in which the term of residual

vortex stretching is proportional to z3/Z3. It is also
worth mentioning that the e�ect of residual vortex
stretching is enhanced relatively to the e�ect of mean
shear when R assumes small values since the former is

represented by a R 1/2-term while, for the latter, the
corresponding term is linear in R. The equilibrium
scalar timescale is related to mean shear since ty1 �
R1tt1 that is, with tt1 derived from the model of
Bernard and Speziale, ty1 � R1=S

����
C
p

m. In this
asymptotic regime, cy=2 and y 0 2 decreases exponen-

tially at the rate tÿ1y1.

4. Discussion

Quantitative comparisons of model predictions with

measurements are not easy for experimental data relat-
ing to the e�ect of uniform mean shear on an uniform
¯uctuating passive scalar ®eld are apparently lacking.

Sreenivasan and Tavoularis [14] have carried out ex-
periments on zero and non-zero mean gradient tem-
perature ®elds in sheared and unsheared turbulence

but were specially interested in the skewness of the
temperature derivatives. Other available experimental
results combine the e�ects of mean shear and mean
scalar gradients one with the other [11,12]. However, it

can be conjectured that in the case of di�usion from a
concentrated source, uniformity of the scalar ®eld is
approximately met on the centerline, beyond the near

vicinity of the source. The measurements downstream
a heated line source in an uniform shear ¯ow by
Karnik and Tavoularis [9] (specially those on the longi-

tudinal and transversal turbulent ¯uxes of temperature
and of its variance) suggest that the budget of tem-
perature variance on the centerline is reduced to a con-
vection-equals-dissipation equilibrium. This, in passing,

is reminiscent of experimental results on heat di�usion
from point and line sources in turbulent boundary
layers [41±43]. The experimental data of Karnik and

Tavoularis [9] show, in addition, that both the velocity
and the scalar microscales tend to constant values
from which it can be surmised that the scalar-to-vel-

ocity timescale ratio reaches an equilibrium value. It is
worth mentioning that the measured integral length-
scales are not constant but increase with downstream

distance. The ratio of scalar-to-velocity longitudinal
integral lengthscales is found, however, to approach a

constant value.
Now, the convection/dissipation regime of tempera-

ture variance together with the fact that the mechan-

ical timescale tt=q 2/2E tends to a constant in this ¯ow
[11,20], imply that the R-equation takes the form dR/
dt= 1/2(cyÿ2)tÿ1t (Section 3.1). Hence, the constancy

of R means that cy approaches 2 and that the scalar
variance thereby decreases exponentially on the center-
line, in the far ®eld. Although Karnik and Tavoularis

[9] ®t the decay of temperature variance with a power
law, it can be shown from their data that beyond xy/
M = 60, where the scalar microscale becomes con-
stant, an exponential law of decay is also suitable. This

latter is in exp[ÿa(xyÿ60 M )/M ] with a20.037; xy is
the distance to the heated line and M = 0.0254 m, the
height of each channel of the ¯ow separator. As shown

in Fig. 1, the above exponential law ®ts reasonably
well the far-®eld decay of temperature variance
measured by Karnik and Tavoularis. The timescale of

decay which, in this case, is also the scalar timescale,
is: ty=M/aUc20.09 s; Uc=7.85 m sÿ1 is the mean
centerline velocity. Interestingly, this estimate of ty is

close to the value measured by Tavoularis and Corrsin
[11].
The above brief qualitative analysis con®rms the

theoretical predictions of the models examined pre-

viously, at least in some respects namely, the asymp-
totic trend of ly and R as well as the decay of the sca-
lar variance. It is to be mentioned, however, that the

above conclusions do not agree with the theoretical
study of Majda [8] who, considering a scalar ®eld in
steady forced turbulence, showed that uniform con-

stant mean shear drives the asymptotic decay of scalar
variance to follow a power-law of time.

5. Conclusion

Under the e�ect of uniform mean shear and in the
absence of a mean scalar gradient, spectral self-preser-
vation analysis predicts an exponential asymptotic

decay of scalar ¯uctuations variance with scalar micro-
scale, integral lengthscale and scalar-to-velocity time-
scale ratio tending to constant values. As expected,
mean shear is found to enhance the decay rate of

scalar ¯uctuations. One-point models yield, qualitat-
ively, a similar behaviour. To some extent, these fea-
tures are corroborated by experimental data relating to

heat di�usion in uniformly sheared turbulence.
Standard one-point modelling, in which q 2 and E

increase exponentially at large times, leads to an uni-

versal asymptotic value R1 of the scalar-to-velocity
timescale ratio (in so far as model constants can be
considered as universal). On the contrary, a model
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which allows for residual vortex stretching and drives
the velocity ®eld to a production-equals-dissipation

equilibrium would lead to a value of R1 depending on
residual vortex stretching in both the velocity and the
scalar ®elds.

Estimating the validity of the di�erent concepts is
unfortunately not easy in the present case. An exper-
imental assessment of their asymptotics would need

further investigations specially, measurements con-
ducted in a scalar ®eld submitted to the sole e�ect of
uniform mean shear, at large enough total strain.
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